О проекте Контакты
Жалобы в УФАС
Охрана труда
Трудовое право
Доверенности
Договора
Новости


25.05.2015
Арбитражный суд признал банкротом турфирму "Роза ветров ...

25.05.2015
Главу арбитражного суда Самарской области лишили статуса ...

25.05.2015
Арбитражный суд взыскал с ЧЭМК 450 тысяч рублей в пользу ...

25.05.2015
Арбитражный суд Петербурга сегодня продолжит ...

15.04.2015
«Мечел» предложил Сбербанку конвертировать часть долга в акции

15.04.2015
«Мечел» не предлагал ВТБ конвертировать долг в акции

22.03.2015
Юникредит банк намерен обратиться в арбитражный суд с заявлением о признании банкротом ОАО «Группа Е4»

23.03.2015
АкадемРусБанк признан банкротом

23.03.2015
Арбитражный суд отказался обанкротить проблемную страховую компанию «Северная казна» за 5,6 тыс. рублей долга

13.10.2014
Суд разъяснил права миноритариев «Башнефти» на операции с акциями


(к СНиП 2.04.02-84) автоматизация водоснабжения


    Ниже представлен типовой образец документа. Документы разработаны без учета Ваших персональных потребностей и возможных правовых рисков. Если Вы хотите разработать функциональный и грамотный документ, договор или контракт любой сложности обращайтесь к профессионалам.



    ГОСУДАРСТВЕННЫЙ
    ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПРОЕКТНЫЙ ИНСТИТУТ СОЮЗВОДОКАНАЛПРОЕКТ ГОССТРОЯ СССР
    ПОСОБИЕ
    по проектированию автоматизации и диспетчеризации систем водоснабжения
    (к СНиП 2.04.02-84)
    Утверждено
    приказом СоюзводоканалНИИпроекта от 5 марта 1985 г. №41
    Рекомендовано к изданию техническим советом Союзводоканалпроекта Госстроя СССР.
    Содержит сведения об объемах автоматизации, технологического контроля и системах управления водопроводными сооружениями. Для инженерно-технических работников проектных организаций.

    При пользовании Пособием следует учитывать утвержденные изменения строительных норм и правил и государственных стандартов, публикуемые в журнале „Бюллетень строительной техники" Госстроя СССР и информационном указателе „Государственные стандарты. СССР" Госстандарта.
    ПРЕДИСЛОВИЕ
    Пособие разработано на основании проведенных исследований, обобщения отечественного и зарубежного опыта проектирования и эксплуатации систем автоматизации водопроводных сооружений, а также „Инструкции по проектированию автоматизации и диспетчеризации систем водоснабжения" (СН 516-79).
    В Пособии приведены рекомендуемые объемы технологического контроля, автоматизации, диспетчерского управления и телемеханизации в сетях и на сооружениях, обеспечивающих нормальную эксплуатацию систем водоснабжения; освещены основные вопросы проектирования автоматизированной системы управления технологическим процессом (АСУ ТП) водоснабжения; приведена методика расчета экономической эффективности АСУ ТП и системы телемеханизации (как первого этапа) для определения целесообразности их проектирования.
    По мере накопления опыта эксплуатации установок автоматизации, а также появления новых разработок и результатов исследований Пособие будет дополнено принципиальными схемами и решениями по автоматизации отдельных механизмов и систем, методикой расчета технико-экономического обоснования выбора регулируемого привода и другими материалами.
    Пособие разработано Союзводоканалпроектом — инженеры П.А. Беленькая, А.Е. Высота, И.М. Хинчин (разд. 1—4) совместно с ВНИИ ВОДГЕО ( д-р техн. наук Д.Н. Смирнов, кандидаты техн. наук Б.С. Лезнов, Я.Н. Гинзбург, инж. А.С. Дмитриев (разд. 1 и 2) и АКХ им. К.Д. Памфилова ( кандидаты техн. наук И.С. Эгильский, Т.А. Урнова, В.В. Финкельштейн (разд. 5).
    1. ОБЩИЕ ПОЛОЖЕНИЯ
    1.1. Система автоматического управления предусматривается на всех сооружениях водоснабжения.
    1.2. При определении объема автоматизации сооружений водоснабжения учитываются их производительность, режим работы, степень ответственности, требования к надежности, а также перспектива сокращения численности обслуживающего персонала, улучшение условий труда работающих, снижение потребления электроэнергии, расхода воды и реагентов.
    1.3. Контролируемые параметры определяются исходя из принятой степени автоматизации сооружений, условий их эксплуатации и требований органов санитарно-эпидемиологической службы к составу и свойствам воды.
    1.4. Система автоматизации сооружений водоснабжения должна предусматривать: автоматическое управление основными технологическими процессами в соответствии с заданным режимом или по заданной программе; автоматический контроль основных параметров, характеризующих режим работы технологического оборудования и его состояние; автоматическое регулирование параметров, определяющих технологический режим работы отдельных сооружений и их экономичность.
    1.5. При разработке систем автоматизации, телемеханизации и технологического контроля, как правило, необходимо использовать приборы и оборудование, серийно изготовляемые промышленностью, а также типовые конструкции.
    1.6. Для автоматизации сооружений с большим количеством объектов управления или технологических процессов с количеством логических операций свыше 25 целесообразно использовать микропроцессорные контроллеры вместо релейно-контактной аппаратуры.
    Применение микропроцессорных контроллеров является прогрессивным направлением развития автоматики.
    Контроллер обеспечивает управление объектом или группой объектов, работающих независимо друг от друга или взаимосвязанных одной технологической системой, позволяет осуществлять логические зависимости программным путем без вмешательства в его устройство, а также менять программу в случае необходимости в процессе работы.
    1.7. Для измерения параметров, контроль которых еще не автоматизирован, должен быть предусмотрен лабораторный контроль.
    1.8. Система автоматического управления должна предусматривать возможность местного управления отдельными устройствами или сооружениями.
    2. ПАРАМЕТРЫ ДЛЯ ПРОЕКТИРОВАНИЯ СИСТЕМ АВТОМАТИЗАЦИИ
    ВОДОЗАБОРНЫЕ СООРУЖЕНИЯ
    2.1. На водозаборах поверхностных вод предусматривается автоматическая промывка вращающихся сеток.
    2.2. Автоматическую промывку вращающихся сеток рекомендуется выполнять по перепаду уровней до и после сеток (длительность промывки устанавливается программным реле) и по временной программе, при этом должна быть предусмотрена возможность изменения интервала между промывками, уточняемого в процессе эксплуатации сооружения.
    2.3. На водозаборах подземных вод при переменном водопотреблении рекомендуется предусматривать следующие способы управления насосами:
    дистанционное или телемеханическое — по командам из пункта управления (ПУ);
    автоматическое — в зависимости от уровня воды в резервуаре;
    автоматическое—по давлению в сети.
    2.4. Технологические параметры, подлежащие контролю на водозаборных сооружениях, приведены в табл. 1.
    Таблица 1
    Контролируемый параметр
    Вид информации
    Цель измерения или сигнализации
    Водозаборные сооружения поверхностных вод
    Уровень воды в водоеме и водоприемном колодце
    Измерение
    Контроль
    Перепад уровней на вращающихся сетках
    Сигнализация
    Автоматизация промывки
    Водозаборные сооружения подземных вод
    Температура в наземном павильоне или заглубленной камере
    Сигнализация
    Контроль, автоматизация электроотопления
    Расход воды от каждого водозаборного сооружения (скважины, шахтного колодца и т.д.)
    Измерение
    Контроль
    Аварийный уровень воды в скважинах, уровень воды в приемных колодцах
    Сигнализация
    Отключение насоса при аварийном понижении уровня
    Давление в напорном трубопроводе каждого водозаборного сооружения
    Измерение
    Контроль
    Открывание дверей
    Сигнализация
    «
    НАСОСНЫЕ СТАНЦИИ
    2.5. Схема автоматизации должна обеспечивать пуск и остановку насоса при поступлении управляющего импульса и аварийное отключение насоса при срабатывании электрических и технологических защит.
    Все вспомогательные операции (открывание и закрывание задвижек, заливка насосов, охлаждение подшипников и т.д.), связанные с пуском и остановкой насосов, а также включением резервных насосных агрегатов, за исключением агрегатов станций третьей категории надежности действия, должны выполняться автоматически.
    2.6. При аварийном отключении насоса в результате действия защитных устройств схемы управления насосами с пуском и остановкой на закрытую задвижку должны обеспечивать последующее автоматическое закрывание задвижки. При неисправности задвижки в процессе пуска насос следует отключить.
    2.7. Для упрощения схемы автоматизации и повышения ее надежности насосы, как правило, рекомендуется устанавливать под заливом.
    При необходимости применения принудительного залива его следует контролировать с помощью датчиков, исключающих возможность включения незалитого насоса.
    2.8. Схема автоматизации пуска насоса при принудительном заливе. зависит от принятого способа залива:
    в случаях поагрегатного оборудования насосов вакуум-насосами при подаче импульса на включение насосного агрегата схема автоматизации должна обеспечивать включение вакуум-насоса, контроль залива, включение насосного агрегата и отключение вакуум-насоса после пуска насосного агрегата;
    в случае залива насосов от общей вакуум-установки при подаче импульса на включение насосного агрегата схема автоматизации должна обеспечивать включение вакуум-насоса, подключение насоса к вакуумной линии, контроль залива, включение насосного агрегата с последующим отключением его от вакуумной линии и отключение вакуум-насоса.
    На случай срыва вакуума необходимо предусматривать автоматическое повторное включение вакуум-насоса или автоматическое включение резервного вакуум-насоса.
    2.9. При заливе насосов с помощью вакуум-котла предусматривается автоматическая работа вакуум-насосов в зависимости от уровня воды в вакуум-котле. При подаче импульса на включение насосного агрегата необходимо предусматривать автоматическое отключение его от вакуум-котла.
    2.10. На автоматизированных насосных станциях должно быть предусмотрено автоматическое отключение рабочих насосов при затоплении машинного зала.
    2.11. Для насосных установок с переменным режимом работы необходимо предусматривать возможность регулирования выходных параметров (давления, подачи) насосных агрегатов.
    Режим работы установки рекомендуется регулировать изменением количества работающих агрегатов, дросселированием потока воды в напорных коммуникациях станции, изменением частоты вращения насосов.
    2.12. Регулирование частоты вращения насосов требует применения специальных видов электропривода, а именно: привода с многоскоростными электродвигателями — двух- и многоскоростных асинхронных короткозамкнутых электродвигателей переменного тока;
    привода с индукторными муфтами скольжения ( асинхронных короткозамкнутых электродвигателей переменного тока;
    привода по схеме асинхронно-вентильного каскада — асинхронных электродвигателей переменного тока с фазным ротором;
    частотного привода ( асинхронных короткозамкнутых электродвигателей переменного тока;
    привода на базе вентильного электродвигателя ( синхронных электродвигателей переменного тока.
    2.13. Применение регулируемого привода, с одной стороны, стабилизирует давление в водопроводной сети, и за счет этого обеспечивается экономия электроэнергии на подачу воды, сокращаются утечки и непроизводительные расходы воды, появляется возможность уменьшить площадь насосных станций путем увеличения единичной мощности насосных агрегатов и уменьшения их количества. С другой стороны, регулируемый привод усложняет эксплуатацию оборудования, требует более квалифицированного обслуживания, приводит к увеличению капитальных затрат. При разработке технико-экономического обоснования эти факторы должны быть учтены и сопоставлены по приведенным затратам согласно существующим методикам.
    Применение системы автоматического регулирования (CAP) с регулируемым приводом, как правило. обеспечивает экономию электроэнергии на 5—15 %, а в отдельных случаях — на 20 %. Расход воды за счет сокращения утечек и непроизводительных расходов уменьшается на 3—4 %.
    2.14. Обычно CAP с регулируемым приводом целесообразно применять в насосных установках сравнительно большой мощности (75-100 кВт и выше), характеризующихся существенной неравномерностью подачи и большой динамической составляющей высоты водоподъема, т.е. большой крутизной характеристики сети. Крутые характеристики сети обычно соответствуют протяженным водоводам и расположению насосной станции на тех же или более высоких геодезических отметках, что и потребитель. Неравномерность подачи воды характеризуется параметром ( и равна:
    ,
    где Qмин ( минимальное значение секундной подачи в течение расчетного периода, например года;
    Qмакс ( максимальное значение секундной подачи за тот же период.
    Крутизна характеристики сети Н(п определяется соотношением
    ,
    где Н(п ( противодавление, определяемое статической составляющей высоты водоподъема или работой других насосов, подающих воду в ту же сеть;
    Нмакс ( полная высота водоподъема, соответствующая подаче Qмакc.
    Применение CAP с регулируемым приводом обычно экономически оправдано в насосных установках с агрегатами мощностью 75 кВт и выше с параметрами ( и Нп не более 0,8—0,85.
    В менее мощных установках регулирование целесообразно осуществлять дросселированием потока воды в напорных коммуникациях станций. Для дросселирования целесообразно применять дроссельные затворы, а не задвижки, являющиеся запорными устройствами и не предназначенные для регулирования. Дросселирование хотя и не является оптимальным способом регулирования по энергозатратам, но препятствует распространению повышенного давления в сети и, следовательно, уменьшает утечку и непроизводительные расходы воды.
    2.15. При построении CAP в качестве регулируемого параметра рекомендуется использовать давление в диктующей точке (диктующих точках) сети, а в отдельных случаях — на коллекторе насосной станции. Последнее возможно, когда станция расположена вблизи потребителей, например станция подкачки городского (промышленного) водоснабжения, или когда расчетами либо экспериментами установлено соответствие между изменениями давления в напорном коллекторе и диктующей точке.
    В ряде случаев в качестве регулируемого параметра может быть использован уровень воды в резервуаре или расход воды в водоводе. Рекомендации по выбору контролируемых параметров сети, водоводов и емкостей приведены в пп. 2.58-2.65.
    2.16. Выбор типа регулируемого привода должен обосновываться технико-экономическим расчетом.
    2.17. Многоскоростные электродвигатели рекомендуется использовать в тех случаях, когда применение плавно регулируемых приводов экономически не оправдано, например при ступенчатом изменении водопотребления, а также в тех случаях, когда отсутствуют подходящие по своим параметрам плавно регулируемые приводы. Двух- и многоскоростные двигатели позволяют увеличивать число напорных характеристик насосной установки без увеличения числа насосных агрегатов.
    2.18. Регулируемым приводом из экономических соображений оборудуется, как правило, один агрегат в группе из двух-трех рабочих. В качестве регулируемого принимается наиболее крупный агрегат с наиболее пологой характеристикой. Эта мера препятствует образованию „мертвых зон". Оборудовать регулируемым приводом все работающие агрегаты следует в тех случаях, когда изменение частоты вращения регулируемого агрегата выводит остальные агрегаты в ненормальный режим работы, например в зону низких КПД или кавитации.
    2.19. Технологические параметры, подлежащие контролю на насосных станциях, приведены в табл. 2.
    Таблица 2
    Контролируемый параметр
    Вид информации
    Цель измерения или сигнализации
    Давление в напорных водоводах
    Измерение
    Контроль, регулирование подачи насосной станции
    Расход воды по каждому напорному водоводу
    »
    Контроль
    Давление на насосном агрегате
    Измерение и сигнализация
    Контроль, отключение
    Вакуум во всасывающих линиях насосов и в вакуум-установках
    Измерение
    Контроль
    Уровень воды в резервуарах и приемных камерах
    Измерение и сигнализация
    Контроль, отключение насосов
    Уровень воды в дренажном приямке
    Сигнализация
    Автоматизация работы дренажных насосов
    Температура подшипников агрегатов (если предусмотрена установка датчиков)
    »
    Отключение агрегата при перегреве
    Температура обмотки статора электродвигателя (при необходимости)
    Измерение
    Контроль
    Температура в помещениях необслуживаемых насосных станций
    Сигнализация
    Контроль, автоматизация электроотопления и вентиляции
    Уровень воды в вакуум-котле
    »
    Автоматизация работы вакуум-насосов
    Давление в баке-ресивере
    Измерение
    Автоматизация работы насосов и компрессоров в гидропневматических насосных станциях
    Уровень воды в баке-ресивере
    Сигнализация
    Контроль
    Затопление машинного зала
    »
    »
    Аварийный уровень затопления
    »
    Контроль, автоматическое отключение всех насосов
    2.20. Электрические и трубные проводки, монтаж и установку контрольно-измерительных приборов следует выполнять в соответствии с руководящими материалами (РМ 4), типовыми чертежами и нормалями Главмонтажавтоматики.
    2.21. Расход воды, подаваемой по водоводам насосных станций, следует измерять расходомерами переменного перепада с диафрагмами или трубами Вентури, ультразвуковыми или электромагнитными расходомерами. На насосных станциях с подачей воды до 100 м3/ч по каждому водоводу допускается использовать турбинные водосчетчики для измерения объема поданной воды.
    ОЧИСТНЫЕ СООРУЖЕНИЯ
    Реагентное хозяйство
    2.22. Для уменьшения трудоемкости, исключения контакта людей с реагентами и экономного расходования реагентов все операции, связанные с использованием химических реагентов на водоочистных станциях, максимально автоматизируются.
    Для упрощения автоматизации технологическая схема реагентного хозяйства должна быть построена по блочному принципу, без усложняющих переключений оборудования.
    2.23. В качестве дозирующих устройств растворов коагулянтов и других реагентов в автоматизированных системах рекомендуется применять насосы-дозаторы, регулирующие клапаны и бункерные дозаторы.
    При использовании плунжерных насосов-дозаторов необходимо предусматривать полную очистку раствора от абразивного шлака в отстойниках, гидроциклонах или других устройствах.
    Применение плунжерных насосов-дозаторов для дозирования известковой суспензии не рекомендуется. Для дозирования известковой суспензии рекомендуется применять бункерные дозаторы.
    Плунжерные насосы-дозаторы предусматриваются, как правило, при постоянных расходах обрабатываемой воды.
    Регулирующие клапаны должны записываться из баков постоянного уровня или через регуляторы напора.
    Бункерные дозаторы следует устанавливать выше расходных баков. При дозировании в напорный трубопровод растворы реагентов подаются во всасывающую линию насосов.
    2.24. Системы автоматического дозирования раствора коагулянта в обрабатываемую воду рекомендуется выполнять:
    по соотношению расходов обрабатываемой воды и раствора коагулянта;
    по заданному приращению удельной электрической проводимости (УЭП) воды, смешанной с коагулянтом.
    При всех системах дозирования оптимальную дозу коагулянта следует устанавливать пробным коагулированием.
    2.25. Системы автоматического дозирования по заданному соотношению расходов обрабатываемой воды и раствора коагулянта строятся на базе расходомеров воды (обычно существующих на водоочистных станциях для учета воды), электромагнитных и иных расходомеров раствора коагулянта с преобразователем, футерованных эмалью или фторопластом.
    Системы дозирования, построенные по соотношению расходов обрабатываемой воды и раствора коагулянта, требуют постоянной стабилизации концентрации рабочего раствора коагулянта.
    2.26. Системы дозирования коагулянта, действующие по заданной УЭП воды, строятся на базе узкопредельных кондуктометрических концентратомеров повышенной чувствительности с дифференциальной измерительной схемой.
    Кондуктометры, предназначенные для этой цели, должны быть рассчитаны на измерение приращения УЭП воды в диапазоне 0,5—35 мСм/см и иметь чувствительность не менее 0,0025 мСм/см. Кондуктометры с указанными данными практически пригодны для контроля процессов коагуляции природных вод бассейнов рек на всей территории СССР.
    В качестве кондуктометров для измерения приращения УЭП воды за счет введенного коагулянта могут использоваться приборы, разрабатываемые на базе серийных приборов КК-1.
    При колебаниях расходов обрабатываемой воды, не превышающих 5 % среднего часового расхода, можно применять одноконтурные CAP потока коагулянта, не связывая их с расходом обрабатываемой воды.
    2.27. Систему стабилизации концентрации рабочего раствора коагулянта рекомендуется строить на базе бесконтактных (индукционных), кондуктометрических концентратомеров и запорных задвижек с электрическим приводом.
    Кондуктометры должны быть рассчитаны на диапазон измерения 1-6(10-2 См/см [растворы коагулянта с концентрацией 3-15 % AL2(SO4)3].
    В качестве кондуктометрических концентратомеров для рабочих растворов коагулянта на указанные пределы измерения разрабатываются приборы на базе приборов КК-8,9.
    Подача в обрабатываемую воду растворов полиакриламида, кремниевой кислоты и других флокулянтов ввиду их весьма малых расходов может строиться по упрощенным схемам без применения кондуктометрии, с использованием дистанционно управляемого клапана, регулирующего подачу раствора. При необходимости может быть применена схема пропорционального дозирования по расходу.
    2.28. Подача щелочного реагента (известкового молока) в процессе коагуляции воды автоматизируется по величине рН (характеризующей в данном случае гидратную щелочность). Ввиду медленного изменения щелочности в природных водах следует ограничиться одноконтурной CAP, действующей по отклонению от заданного значения величины рН, реализующей законы ПИ-регулирования. Датчик рН-метра рекомендуется устанавливать в створе полного перемешивания реагента с обрабатываемой водой (на выходе из смесителя или вблизи него).
    При выборе электродов следует руководствоваться техническими данными на них и технологической характеристикой контролируемой среды.
    2.29. При фторировании воды автоматическое дозирование фторсодержащих реагентов следует производить при помощи CAP, построенных с применением ионоселективных фторидных электродов. В паре с электродом на фтор-ионы применяются вспомогательные электроды ЭХСВ-1 или ЭВП-ЛЗ. В качестве первичных и вторичных преобразователей при измерении концентрации фтор-ионов рекомендуется менять датчики и преобразователи промышленных иономеров (рН-метров).
    Необходимо обеспечить постоянный расход контролируемой среды через датчик.
    CAP подачи фторсодержащих реагентов рекомендуется проектировать одноконтурными, действующими по принципу отклонения от заданной концентрации фтор-ионов в обработанной воде.
    Процесс обесфторивания рекомендуется контролировать теми же средствами.
    2.30. Все CAP процесса обработки воды газообразным (жидким) хлором для обеззараживания и иных целей строятся на базе автоматизированных вакуумных дозаторов (хлораторов).
    В качестве автоматизированных хлораторов рекомендуется применить дозаторы хлора комплексной системы „Аквахлор" НИКТИ ГХ УССР.
    Дозаторы системы „Аквахлор" выпускаются производительностью от 5 до 150 кг/ч. Автоматизированный дозатор входит в состав комплексной системы „Аквахлор", состоящей из автоматически управляемых испарителей, эжекторов, анализаторов хлора, панелей управления и сигнализации.
    Лучшими дозаторами хлора признаны хлораторы Таллинского водопровода. Они имеют две модификации: с ручным (С-0277) и с автоматическим (С-0378) управлением.
    Хлораторы Таллинского водопровода серийно не выпускаются, однако на указанные хлораторы эстонским институтом Коммуналпроект разработаны техническая документация и рабочие чертежи.
    2.31. Современные CAP процесса хлорирования воды относятся к типу стабилизационных, действующих по отклонению от заданных концентраций остаточного хлора в обработанной воде, с автоматическим анализатором в канале обратной связи. САР хлора должна обеспечивать содержание хлора в обработанной воде с отклонением от норм ±0,05 мг/л.
    Характерной особенностью CAP процесса обеззараживания воды хлором является большое запаздывание сигнала, поступающего на регулятор и исполнительный механизм от анализатора хлора.
    Продолжительность контакта свободного активного хлора с водой должна быть не менее 30 мин, связанного хлора - не менее 1 ч. Такая продолжительность контакта определяет расстояние между точкой ввода хлора в воду и точкой отбора хлорированной воды на анализ, т.е. основное время транспортного запаздывания.
    Указанные неблагоприятные динамические свойства объекта регулирования требуют применения в CAP процесса хлорирования воды регулирующих устройств с высокими динамическими качествами (например, регуляторов Р27, системы „Каскад-2" или РБИЗ-П системы АКЭСР) и динамических преобразователей с памятью (например, Д07 или БДП-П).
    Динамические качества CAP процесса хлорирования воды можно повысить, уменьшив время запаздывания путем приближения точки отбора хлорированной воды к точке ввода хлора. В этом случае для контроля за содержанием остаточного хлора устанавливается второй анализатор в створе, где обеспечивается нормированная продолжительность контакта хлора с водой.
    Наиболее распространенный способ улучшения динамических свойств CAP процесса хлорирования воды заключается в устройстве двухконтурной (двухкаскадной) CAP.
    Первый контур обеспечивает заданное соотношение между расходом хлор-газа и расходом обрабатываемой воды, второй корректирует эти соотношения по отклонению от нормы количества остаточного хлора в обработанной воде.
    Если надежность автоматического анализатора хлора недостаточно высокая, в длительном режиме работы ограничиваются устройством первого контура, т.е. строят CAP стабилизации принятой дозы хлора в зависимости только от расхода обрабатываемой воды, корректируя эту дозу вручную по данным лабораторных измерений или по показаниям анализаторов.
    2.32. При обработке воды хлором с целью ее обесцвечивания или борьбы с биологическими отложениями, когда оптимальная доза хлора устанавливается по опытным данным, системы управления хлораторами строятся также по схемам стабилизации с коррекцией дозы хлора по концентрации остаточного хлора.
    2.33. При проектировании и устройстве систем автоматизации и технологического контроля процесса хлорирования воды следует иметь в виду, что современные анализаторы хлора в воде построены по амперметрическому методу измерения. В режиме работы с применением реагентов (йодистого калия — для перевода хлора в эквивалентное количество йодида и буферного раствора — для создания кислой среды с рН = 4,5 в пробе воды, поступающей в электрохимическую ячейку анализатора) анализаторы амперметрического типа измеряют содержание общего активного хлора (свободного + связанного). В режиме работы без применения йодистого калия анализатор измеряет только содержание свободного активного хлора.
    Отстойники, осветлители
    2.34. В отстойниках и осветлителях предусматривается устройство для автоматического контроля предельного уровня осадка. Автоматизации выпуска осадка должна осуществляться в тех случаях, когда предусмотренная проектом частота выпуска осадка из каждой секции больше одного раза в сутки.
    2.35. Автоматизацию выпуска осадка следует осуществлять по достижении предельного уровня, при котором сигнал от датчика уровня осадка должен подаваться на привод выпускной задвижки, или при механизированном удалении осадка на привод соответствующего оборудования, например скребков.
    Возможно дистанционное управление выпуском осадка из ПУ по сигналу о достижении предельного уровня. Продолжительность выпуска осадка должна уточняться в процессе эксплуатации.
    2.36. При автоматическом выпуске осадка вводится блокировка, исключающая, как правило, возможность одновременного выпуска осадка из нескольких отстойников или осветлителей.
    Фильтры, контактные осветлители
    2.37. На фильтрах регулирование скорости фильтрования осуществляется по расходу фильтрованной воды или по уровню воды в фильтре.
    При регулировании по уровню воды в фильтрах должно быть обеспечено равномерное распределение ее между фильтрами, находящимися в работе.
    2.38. В качестве дросселирующего устройства в регуляторах скорости фильтрования рекомендуется применять дисковые затворы и дроссельные поворотные заслонки. Допускается применение простейших поплавковых клапанов.
    2.39. В тех случаях, когда скорость фильтрования необходимо изменять, применяются управляемые регуляторы скорости фильтрования, позволяющие регулировать режим работы фильтров дистанционно с пульта управления.
    2.40. Вывод фильтров на промывку рекомендуется осуществлять по потере напора в загрузке или по положению дросселирующего органа, установленного на трубопроводе фильтрованной воды.
    Допускается вывод фильтров на промывку по сигналу о повышении уровня в фильтре или по временной программе.
    2.41. На станциях очистки воды с числом фильтров свыше 10 автоматизируется процесс промывки. При числе фильтров до 10 предусматриваются сигнализация о необходимости вывода фильтра на промывку и полуавтоматическое сблокированное управление промывкой с пультов или щитов.
    2.42. Схема автоматизации процесса промывки фильтров и контактных осветлителей должна обеспечивать выполнение в определенной последовательности следующих операций: управления по заданной программе затворами и задвижками на трубопроводах, подводящих и отводящих обрабатываемую воду, пуска и остановки насосов промывной воды и воздуходувок при воздуховоздушной промывке.
    2.43. В схемах автоматизации следует предусматривать блокировку, допускающую, как правило, промывку только одного фильтра.
    2.44. Насосы промывной воды, как правило, принимаются с низковольтными приводными электродвигателями. При установке насосов с высоковольтными двигателями необходимо обеспечить такую последовательность промывки фильтров, при которой число включений насосов будет минимальным.
    2.45. При подаче ...